1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
| model = test_model() state = torch.load('test.pth') model.load_state_dict(state['model'], strict=True) model.eval()
example = torch.rand(1, 3, 128, 128) torch_out = torch.onnx.export(model,example,"test.onnx", opset_version=9, do_constant_folding=True, export_params=True, input_names = ['X'], output_names = ['Y'])
input_tensor1 = torch.randn(1,4,400, 400).cuda() input_tensor2 = torch.randn(1,2,3).cuda() torch_onnx_out = torch.onnx.export(model, (input_tensor1,input_tensor2), "hrocr.onnx", export_params=True, input_names=['input_tensor1','input_tensor2'], output_names=["output0","output1"], opset_version=12) data = torch.rand(1, 3, 224, 224) data = data.cuda() torch.onnx._export(model, data, "xxx.onnx", export_params=True, opset_version=12, input_names=["input"] , output_names=["output"] , dynamic_axes={'input':{0 : 'batch_size'}, 'out': {0 : 'batch_size'}})
|